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The p roposed  [1-3] nonlocal  formulat ion of the hypothesis  that  the ground p r e s s u r e  is  con-  
s tant  in nons ta t ionary  p r e s s u r e  f i l t ra t ion in a deep e las t ic  s t r a t um is  der ived  f r o m  the equi-  
l ib r ium equations for  the s t r a t u m - r o o f  sys t em.  The roof  is  cons ide red  to be a f lat  plate  
[4] and the f loor  of the s t r a tum is  a s s u m e d  to be rigid.  An equation is  es tab l i shed  for  the 
sca le  of the region of influence on the s t r e s s  and p r e s s u r e  dis t r ibut ions at a point. 

1. In the theory  of the nonlocal e las t ic  f i l t rat ion of a homogeneous fluid in a deep s t r a t um [1-3], the 
l inear  equation for  nons ta t ionary  f i l t ra t ion flow 

(ap + a) Op 0o ko G (i.i) 
- -  b Ot m@o V~p + mop---~ 

i s  complemented  by the hypothesis  (in in tegra l  form) that the ground p r e s s u r e  F (xl, x 2) i s  constant  at each 
point of the s t r a tum,  

 (xl, x ,t) + f I * = r  (x. 
- - c o  

Here  p,/~ a r e  the f i l t ra t ing fluid densi ty  and viscosi ty ;  k, m a r e  the s t r a t um pe rmeab i l i t y  and p o r o s -  
ity; p is  the in te rs t i t i a l  p r e s s u r e ,  a is  the effect ive s t r e s s  in the s t r a t um f rame ,  and 

9 /9o  = i - ~  a p  ( p  - -  Po) ,  m / m  o = t -]- a ( p  - -  Po) - -  b (~ - -  %) 

where the subscr ip t  0 indicates  the unper turbed  state;  at) , a ,  b, k 0 a r e  constants ;  G is  the source  or  sink 
intensi ty  needed to imi ta te  the operat ion of the dri l l  hol&; �9 is  an influence function for  which we can take 
the Gauss function 

i (I) (Xl, x2) = ~ exp {-- (xl ~ ~- x:2)} 

I f  the scale  d of the region of influence is  much l e s s  than the typical  dimension of the region inwhich 
p va r i e s ,  Eq. (1.2) becomes the usual local  condition that  the ground p r e s s u r e  is  constant  [5]. But i f  d is  
re la t ive ly  large ,  (1.2) r educes  to the equation d a / d t = 0 ,  or  cr-~0=0 [1, 2]. 

Equation (1.2) t akes  the following forms:  

fo r  the one-d imens iona l  p l ane -pa ra l l e l  c a se  

+r 

- - c o  

A 1 exp (-- x 2) (z) = -~- a (x), a (x) = V ~  

for  the a x i s y m m e t r i c  p l ane - r ad i a l  case  
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c~ 

t) + i  * (--~-~ ' + ) P  (P' t)pd 9 = P  (r) 6 (r, (1.4) 
g 

0 

i O0 (r, p )=  -3~-G (r, p), G(r, p)=2Io(2rp)exp{-- ( r~+p2]}  

where I 0 is a Besse l  function of zero  o rde r  and imaginary  argument .  

2. Consider  the one-dimensional  p lane-para l le l  case.  The thickness of the rock lying on a porous 
s t ra tum of thickness h will be s imulated by an infinite e las t ic  fiat plate (Fig. 1) of r igidi ty D. 

Ignoring the iner t ia  t e r m  and lett ing w denote the displacement  of the plate, we cons t ruc t  the bending 
equation for the plate 

D d4w / dx  4 = F - -  o - -  p (2.1) 

By Hooke's  law 

a = E w } h ,  w = a h / E  

where E is  Yotmg's modulus for  the s t ra tum f rame.  

We note that Eqs. (1.1) and (2.1), writ ten in t e r m s  of w and the hydraulic head, were solved d i rec t ly  
in [4] for  the case  of nonsta t ionary flow to a gal lery.  

Because  of analytic complexi t ies  the authors  only cons idered  the construct ion of an approximate 
equation for  the size of the conical depress ion as a hmction of the t ime. 

We t r a ns fo rm  (2.1) to an integral  equation of the form (1.3). We put 

/ E ~'/, az ap (2.2) = ( ~ - )  x, ~ , (o )= -w ,  /(o) ot 

The Eq. (2.1) can be writ ten as follows, a f te r  differentiating both sides with respec t  to t: 

dau / &l a + u = ]  (2.3) 

Using (2.3), we can express  u(v) in t e r m s  o f f (v ) .  To do this we make a Four i e r  integral  t r a n s f o r -  
mation [6], putting 

+ c o  + c o  

V~ - - o o  : ~ c o  

Then f rom (2.3) we have 

(2.4) 

We note that [7] 

U(~) = F ( ~ ) / ( s  1) (2.5) 

-{-co 

i f e-i*'x d~, 
- -co  

c~ 

- -  0 X ' + t -  = [ - ~ - ) e x p , - - - V - T ]  ~ +-g-)  

Applying the inverse  Four i e r  t r ans fo rm and the convolution theorem [6] to (2.5), we have 

u01)=  2 j exp{ 
- -co  

In--~[ sin 

Noting (2.2), a f te r  integrat ion with r e spec t  to t, we obtain f rom (2.7): 

(2.6) 

(2.7) 

- -co  

�9 1 (x) = - 8 -  G1 (x) ,  G1 (x) n , ( 2 . 9 )  

We note that G 1 (x) is  normal ized  in ( -  % + ~) and i ts  numer ica l  values a lmost  coincide with those of 
G (x), defined by (1.3). 
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whe re  the cons tan t  v i s  defined below. 

It follows from (2.6) and (2.9) that 

(~ ~ cos(l/~xx) dk (2.10) 

0 

We app rox ima te  the funct ion (~t+ 1)-t  in (2.10) by the expo-  
nent ia l  funct ion 

(~' + i) -~ = exp (--~/~v~ ~) (2.11) 

Then, by (2.11), we obtain [7] 

Thus ,  not ing (2.9), we have 

, - -  X2 

GI(x )  V-fly exp ~ 

1 - -  x~ ( 2 . 1 2 )  
c l ) j  (x) = V-K(v6) exp v~ 

As a resu l t ,  f r o m  (1.3) and (2.12), we have 

]f~d exp  d2 - - '  01 = ]/-~'(vS) exp (vS) ~ 

I t  fol lows f r o m  (2.12) tha t  the i n t eg ra l  condi t ion that  the g round  p r e s s u r e  is  cons tan t  (1.13), p r o -  
posed  as  a hypo thes i s ,  and Eq. (2.8), obta ined f r o m  the equat ions  of  e l a s t i c i t y  theory ,  co inc ide  if  we put 

d = ~5 ( 2 . 1 4 )  

We note  tha t  the  choice  of  F (x) on the r igh t  s ide of  (2.8) is  not  s ign i f ican t  f o r  the  solut ion of  o r d i n a r y  
p r o b l e m s  in f i l t ra t ion  theo ry ,  s ince  in the n o n s t a t i o n a r y  c a s e  the i m p o r t a n t  r e l a t ion  is  between the t ime  
de r iva t i ve s  a a / O t  and a p / a t  and not  between the funct ions  ~ and p. T rad i t i ona l ly  this  funct ion i s  i n t e r p r e t e d  
as  the g round  p r e s s u r e .  

The cons tan t  v in the approx ima t ion  fo r  (~4+ 1)-1 can be found, fo r  example ,  f r o m  the  equat ion 

d~ -- ~ = exp - - -u -d~  (2.15) 
0 0 

Then v and the unknown p a r a m e t e r  d a r e  given by 

2 f 4hD ~'/ ,  (2.16) 
= .  V--- ~ ,  d = 2 ~ ]  

3. C o n s i d e r  the a x i s y m m e t r i c  p l a n e - r a d i a l  c a se .  Le t  r denote the r ad ia l  coord ina te  and le t  us  r e -  
ta in  the nota t ion  of  Sec. 2. 

In  the a x i s y m m e t r i c  c a s e  the bending equat ion fo r  the p la te  has  the f o r m  

D i 0 ~r o [ +  O (r  Ow ~] ' [_  1" 
r -3T t - 3 T . _  - - E \ - ~ ) J I -  - - ~ - - P  

(c; = Ew/h, w = ah/E) 

AS in the t w o - d i m e n s i o n a l  ease ,  we t r a n s f o r m  (3.1) to  an i n t eg ra l  equation.  We put 

(3.1) 

[ E , ' I ,  O: Op (3.2) 
~l ~'-K-D--) r, u (~l) = at " ] QI) = at 

Af t e r  d i f fe ren t ia t ing  both s ides  with r e s p e c t  to t,  we can wr i t e  (3.1) as  

1 d f [ [ ~ ] ] d  t d du  (3.3) 

We apply  the Hankel  in t eg ra l  t r a n s f o r m  [6] with ke rne l  J0 (~, 77), whe re  J0 i s  the B e s s e l  function of  
z e r o  o r d e r ,  to  (3.3). Pu t  

U ()~) = u (n) Yo (L,I) 'l d,l, F (~.) = ] ('l) Jo (~.'l) 'l d,1 (3.4) 
0 0 
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Multiplying both sides of (3.3) by J0 (k, ~)~ and integrating with respect to ~ from 0 to % we obtain 
[7] 

u (k) = F (x) / (x, + 1) (3.5) 

Applying the inversion formula to (3'.4) and noting (3.5), we have 

i ~ ]~176 d~ 
o 0 

Noting (3.2), a f te r  in tegrat ion with r e s p e c t  to t, we have, f rom (3.6): 

(3.6) 

co 

a(r,t)-[- f ~1(--~-, ~ ) p ( p , t ) p d p - ~  F (r) 
0 

cI:) 1 (r, p) -~- G 1 (r, p), G~ (r, p) = 2 Z* + l 
0 

(3.7) 

(3.8) 

We note that G I (r,p) is normalized with respect to both arguments in (0, co). 

We approximate (k4+ i) -i in (3.8) by the exponential function (2.11). Then from (3.8) we obtain [7] 

Thus, noting (3.8), we have 

2 I (2rp~ e x p ~  G1 (r, p) = - ~  0 ~-~] 

2 ~ /2rp\ r (~, p )  = ( -~  ~o ~ )  ~xp 

As a resu l t ,  f r om (1.4) and (3.9), we have 

- -  (,~ + p~) ( 3 . 9 )  

r 2 4 7  2 � 9  1o" ox, - (r, + (3.10) 

qbt -~-, -- ( - ~  "0 ~(-~r exp (v6) 2 

F r o m  (3.10) we see  that  the hypothetical  condition (1.4) and Eq. (3:7), der ived here ,  coincide if  we 
accept  (2.14), and so we have, approximate ly ,  v=2/4-'~. Then, by (3.8) and (3.11), the p a r a m e t e r  d, as yet  
undetermined,  i s  given by (2.16). Thus follows the impor tan t  r e su l t  that  in both the p l ane -pa ra l l e l  and the 
p l ane - r ad i a l  ca ses  the p a r a m e t e r  d has the s ame  value under the nonlocal  condition (1.2) that  the ground 
p r e s s u r e  is  constant.  

We note that i f  the approximat ion constant  v is  defined by the condition that the root  mean square  de-  
viation of the function (X4+ 1) -1 f r o m  (-v2X2/2) is  a min imum,  we have 

t 
V,/,(v~,0) + 2 VH~ ~ 0 

where Va/2 (x, y) is Lommel's function of two variables [7]. 

4. It follows from the above investigations that the integral condition (1.2), which states that the 
ground pressure is constant at each point of the stratum, previously introduced as a hypothesis using the 
Gauss function, agrees very well with Eqs. (2.8) and (3.7), which are obtained from the equilibrium equa- 
tions for a porous stratum-thick rock system lying on a stratum. 

The constant d in (1.2) is given, to a high degree of accuracy, by 

d = 2 (4hD / E)'/" 

In solving actual  p rob l em s  in the theory  of nonlocal  f i l trat ion,  we can use  the condition (2.8) or  (3.7) 
that  the ground p r e s s u r e  is  constant,  obtained f rom the equations of e las t ic i ty  theory ,  the fo rm of the k e r -  
nel in the condition depending on whether  the p rob lem is  p l ane -pa ra l l e l  or  p lane- rad ia l .  I t  i s  s imple r  to 
use  (1.2), which contains the f ami l i a r  Gauss  function, and which s ta tes  that  the ground p r e s s u r e  is  con-  
stant,  as  in [1.2], taking d to have the value given above. 

The author  wishes  to thank V. N. Nikolaevski i  for  a number  of useful observa t ions .  
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